Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.11.17.567633

ABSTRACT

As SARS-CoV-2 continues to evolve, increasing in its potential for greater transmissibility and immune escape, updated vaccines are needed to boost adaptive immunity to protect against COVID-19 caused by circulating strains. Here, we report features of the monovalent Omicron XBB.1.5-adapted BNT162b2 vaccine, which contains the same mRNA backbone as the original BNT162b2 vaccine, modified by the incorporation of XBB.1.5-specific sequence changes in the encoded prefusion-stabilized SARS-CoV-2 spike protein (S(P2)). Biophysical characterization of Omicron XBB.1.5 S(P2) demonstrated that it maintains a prefusion conformation that adopts a flexible and predominantly open one-RBD-up state, with high affinity binding to the human ACE-2 receptor. When administered as a 4th dose in BNT162b2-experienced mice, the monovalent Omicron XBB.1.5 vaccine elicited substantially higher serum neutralizing titers against pseudotyped viruses of Omicron XBB.1.5, XBB.1.16, XBB.1.16.1, XBB.2.3, EG.5.1 and HV.1 sublineages and the phylogenetically distant BA.2.86 lineage than the bivalent Wild Type + Omicron BA.4/5 vaccine. Similar trends were observed against Omicron XBB sublineage pseudoviruses when the vaccine was administered as a 2-dose primary series in naive mice. Strong S-specific Th1 CD4+ and IFN{gamma}+ CD8+ T cell responses were also observed. These findings, together with prior experience with variant-adapted vaccine responses in preclinical and clinical studies, suggest that the monovalent Omicron XBB.1.5-adapted BNT162b2 vaccine is anticipated to confer protective immunity against dominant SARS-CoV-2 strains. ONE-SENTENCE SUMMARYThe monovalent Omicron XBB.1.5-adapted BNT162b2 mRNA vaccine encodes a prefusion-stabilized spike immunogen that elicits more potent neutralizing antibody responses against homologous XBB.1.5 and other circulating sublineage pseudoviruses compared to the bivalent Wild Type + Omicron BA.4/5 BNT162b2 vaccine, thus demonstrating the importance of annual strain changes to the COVID-19 vaccine.


Subject(s)
COVID-19
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.03.31.535057

ABSTRACT

In somatic cells, microRNAs (miRNAs) bind to the genomes of RNA viruses and influence their translation and replication. Here we demonstrate that a significant number of miRNA binding sites locate in the NSP4 region of the SARS-CoV-2 genome, and the intestinal human miRNAs exert evolutionary pressure on this region. Notably, in infected cells, NSP4 promotes the formation of double-membrane vesicles, which serve as the scaffolds for replication-transcriptional complexes and protect viral RNA from intracellular destruction. In three years of selection, the loss of many miRNA binding sites, in particular, those within the NSP4, has shaped the SARS-CoV-2 genomes to promote the descendants of the BA.2 variants as the dominant strains and define current momentum of the pandemics.

3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.11.17.516898

ABSTRACT

The BNT162b2 bivalent BA.4/5 COVID-19 vaccine has been authorized to mitigate COVID-19 due to current Omicron and potentially future variants. New sublineages of SARS-CoV-2 Omicron continue to emerge and have acquired additional mutations, particularly in the spike protein, that may lead to improved viral fitness and immune evasion. The present study characterized neutralization activities against new Omicron sublineages BA.4.6, BA.2.75.2, BQ.1.1, and XBB.1 after a 4th dose (following three doses of BNT162b2) of either the original monovalent BNT162b2 or the bivalent BA.4/5 booster in individuals >55 years of age. For all participants, the 4th dose of monovalent BNT162b2 vaccine induced a 3.0, 2.9, 2.3, 2.1, 1.8, and 1.5 geometric mean neutralizing titer fold rise (GMFR) against USA/WA1-2020 (a strain isolated in January 2020), BA.4/5, BA.4.6, BA.2.75.2, BQ.1.1, and XBB.1, respectively; the bivalent vaccine induced 5.8, 13.0, 11.1, 6.7, 8.7, and 4.8 GMFRs. For individuals without SARS-CoV-2 infection history, BNT162b2 monovalent induced 4.4, 3.0, 2.5, 2.0, 1.5, and 1.3 GMFRs, respectively; the bivalent vaccine induced 9.9, 26.4, 22.2, 8.4, 12.6, and 4.7 GMFRs. These data suggest the bivalent BA.4/5 vaccine is more immunogenic than the original BNT162b2 monovalent vaccine against circulating Omicron sublineages, including BQ.1.1 that is becoming prevalent globally.


Subject(s)
COVID-19 , Seizures
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.21.508818

ABSTRACT

The SARS-CoV-2 Omicron variant and its sublineages show pronounced viral escape from neutralizing antibodies elicited by vaccination or prior SARS-CoV-2 variant infection owing to over 30 amino acid alterations within the spike (S) glycoprotein. We and others have recently reported that breakthrough infection of vaccinated individuals with Omicron sublineages BA.1 and BA.2 are associated with distinct patterns of cross-neutralizing activity against SARS-CoV-2 variants of concern (VOCs). BA.2 breakthrough infection mediated overall stronger cross-neutralization of BA.2 and its descendants (BA.2.12.1, BA.4, and BA.5) compared to BA.1 breakthrough infection. Here we characterized the effect of Omicron BA.4/BA.5 S glycoprotein exposure on the magnitude and breadth of the neutralizing antibody response upon breakthrough infection in vaccinated individuals and in mice upon booster vaccination. We show that immune sera from triple mRNA-vaccinated individuals with subsequent Omicron BA.4/BA.5 breakthrough infection display broad and robust neutralizing activity against Omicron BA.1, BA.2, BA.2.12.1, and BA.4/BA.5. Administration of a prototypic BA.4/BA.5-adapted mRNA booster vaccine to mice following SARS-CoV-2 wild-type strain-based primary immunization is associated with similarly broad neutralizing activity. Immunization of naive mice with a bivalent mRNA vaccine (wild-type + Omicron BA.4/BA.5) induces strong and broad neutralizing activity against Omicron VOCs and previous variants. These findings suggest that when administered as boosters, mono- and bivalent Omicron BA.4/BA.5-adapted vaccines may enhance neutralization breadth, and in a bivalent format may also have the potential to confer protection to individuals with no pre-existing immunity against SARS-CoV-2.


Subject(s)
Severe Acute Respiratory Syndrome , Breakthrough Pain
5.
Nurse Lead ; 20(6): 594-600, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1796299

ABSTRACT

The COVID-19 pandemic created stressful working conditions for nurses and challenges for leaders. A survey was conducted among 399 acute and ambulatory care nurses measuring availability of calming and safety resources, perceptions of support from work, and intent to stay. Most nurses reported intent to stay with their employer, despite inadequate safety and calming resources. High levels of support from work were significantly influenced nurses' intent to stay. Leadership actions at the study site to provide support are described, providing context for results. Nurse leaders can positively influence intent to stay through consistent implementation of supportive measures.

6.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.24.485633

ABSTRACT

The newly emerged Omicron SARS-CoV-2 has 3 distinct sublineages: BA.1, BA.2, and BA.3. BA.1 accounts for the initial surge and is being replaced by BA.2, whereas BA.3 is at a low prevalence at this time. Here we report the neutralization of BNT162b2-vaccinated sera (collected at 1 month after dose 3) against the three Omicron sublineages. To facilitate the neutralization testing, we engineered the complete BA.1, BA.2, or BA.3 spike into an mNeonGreen USA-WA1/2020 SRAS-CoV-2. All BNT162b2-vaccinated sera neutralized USA-WA1/2020, BA.1-, BA.2-, and BA.3-spike SARS-CoV-2s with titers of >20; the neutralization geometric mean titers (GMTs) against the four viruses were 1211, 336, 300, and 190, respectively. Thus, the BA.1-, BA.2-, and BA.3-spike SARS-CoV-2s were 3.6-, 4.0-, and 6.4-fold less efficiently neutralized than the USA-WA1/2020, respectively. Our data have implications in vaccine strategy and understanding the biology of Omicron sublineages.

7.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.21.476344

ABSTRACT

We report the antibody neutralization against Omicron SARS-CoV-2 after 2 and 3 doses of BNT162b2 mRNA vaccine. Vaccinated individuals were serially tested for their neutralization against wild-type SARS-CoV-2 (strain USA-WA1/2020) and an engineered USA-WA1/2020 bearing the Omicron spike glycoprotein. Plaque reduction neutralization results showed that at 2 or 4 weeks post-dose-2, the neutralization geometric mean titers (GMTs) were 511 and 20 against the wild-type and Omicron-spike viruses, respectively, suggesting that two doses of BNT162b2 were not sufficient to elicit robust neutralization against Omicron; at 1 month post-dose-3, the neutralization GMTs increased to 1342 and 336, respectively, indicating that three doses of vaccine increased the magnitude and breadth of neutralization against Omicron; at 4 months post-dose-3, the neutralization GMTs decreased to 820 and 171, respectively, suggesting similar neutralization decay kinetics for both variants. The data support a three-dose vaccine strategy and provide the first glimpse of the neutralization durability against Omicron.

8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.22.21268103

ABSTRACT

A new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage, B.1.1.529, was recently detected in Botswana and South Africa and is now circulating globally. Just two days after it was first reported to the World Health Organization (WHO), this strain was classified as a variant of concern (VOC) and named Omicron. Omicron has an unusually large number of mutations, including up to 39 amino acid modifications in the spike (S) protein, raising concerns that its recognition by neutralizing antibodies from convalescent and vaccinated individuals may be severely compromised. In this study, we tested pseudoviruses carrying the SARS-CoV-2 spike glycoproteins of either the Wuhan reference strain, the Beta, the Delta or the Omicron variants of concern with sera of 51 participants that received two doses or a third dose ([≥]6 months after dose 2) of the mRNA-based COVID-19 vaccine BNT162b2. Immune sera from individuals who received two doses of BNT162b2 had more than 22-fold reduced neutralizing titers against the Omicron as compared to the Wuhan pseudovirus. One month after a third dose of BNT162b2, the neutralization titer against Omicron was increased 23-fold compared to two doses and antibody titers were similar to those observed against the Wuhan pseudovirus after two doses of BNT162b2. These data suggest that a third dose of BNT162b2 may protect against Omicron-mediated COVID-19, but further analyses of longer-term antibody persistence and real-world effectiveness data are needed.


Subject(s)
Coronavirus Infections , COVID-19
9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.13.460163

ABSTRACT

BNT162b2-elicited human sera are known to neutralize the currently dominant Delta SARS-CoV-2 variant. Here, we report the ability of 20 human sera, drawn 2 or 4 weeks after two doses of BNT162b2, to neutralize USA-WA1/2020 SARS-CoV-2 bearing variant spikes from Delta plus (Delta-AY.1, Delta-AY.2), Delta-{Delta}144 (Delta with the Y144 deletion of the Alpha variant), Lambda, and B. 1.1.519 lineage viruses. Geometric mean plaque reduction neutralization titers against Delta-AY.1, Delta-AY.2, and Delta-{Delta}144 viruses are slightly lower than against USA-WA1/2020, but all sera neutralize the variant viruses to titers of [≥]80. Neutralization titers against Lambda and B. 1.1.519 variants and against USA-WA1/2020 are equivalent. The susceptibility of Delta plus, Lambda, and other variants to neutralization by the sera indicates that antigenic change has not led to virus escape from vaccine-elicited neutralizing antibodies and supports ongoing mass immunization with BNT162b2 to control the variants and to minimize the emergence of new variants.

10.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-540721.v1

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve around the world, generating new variants that are of concern based on their potential for altered transmissibility, pathogenicity, and coverage by vaccines and therapeutics. Here we report that 20 BNT162b2 vaccine-elicited human sera neutralize engineered SARS-CoV-2 with a USA-WA1/2020 genetic background (a virus strain isolated in January 2020) and spike glycoproteins from the newly emerged B.1.617.1 (first identified in India) or B.1.525 (first identified in Nigeria) lineages. Geometric mean plaque reduction neutralization titers against the variant viruses, particularly the B.1.617.1 variant, are lower than the titer against USA-WA1/2020 virus, but all sera tested neutralize the variant viruses at titers of at least 40. The susceptibility of the newly emerged B.1.617.1 and B.1.525 variants to BNT162b2 vaccine-elicited neutralization supports mass immunization as a central strategy to end the COVID-19 pandemic across geographies.


Subject(s)
COVID-19
11.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.18.426984

ABSTRACT

Recently, a new SARS-CoV-2 lineage called B.1.1.7 has emerged in the United Kingdom that was reported to spread more efficiently than other strains. This variant has an unusually large number of mutations with 10 amino acid changes in the spike protein, raising concerns that its recognition by neutralizing antibodies may be affected. Here, we investigated SARS-CoV-2-S pseudoviruses bearing either the Wuhan reference strain or the B.1.1.7 lineage spike protein with sera of 16 participants in a previously reported trial with the mRNA-based COVID-19 vaccine BNT162b2. The immune sera had equivalent neutralizing titers to both variants. These data, together with the combined immunity involving humoral and cellular effectors induced by this vaccine, make it unlikely that the B.1.1.7 lineage will escape BNT162b2-mediated protection.


Subject(s)
COVID-19
12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.02.17.951335

ABSTRACT

The outbreak of 2019-nCoV in the central Chinese city of Wuhan at the end of 2019 poses unprecedent public health challenges to both China and the rest world1. The new coronavirus shares high sequence identity to SARS-CoV and a newly identified bat coronavirus2. While bats may be the reservoir host for various coronaviruses, whether 2019-nCoV has other hosts is still ambiguous. In this study, one coronavirus isolated from Malayan pangolins showed 100%, 98.2%, 96.7% and 90.4% amino acid identity with 2019-nCoV in the E, M, N and S genes, respectively. In particular, the receptor-binding domain of the S protein of the Pangolin-CoV is virtually identical to that of 2019-nCoV, with one amino acid difference. Comparison of available genomes suggests 2019-nCoV might have originated from the recombination of a Pangolin-CoV-like virus with a Bat-CoV-RaTG13-like virus. Infected pangolins showed clinical signs and histopathological changes, and the circulating antibodies reacted with the S protein of 2019-nCoV. The isolation of a coronavirus that is highly related to 2019-nCoV in the pangolins suggests that these animals have the potential to act as the intermediate host of 2019-nCoV. The newly identified coronavirus in the most-trafficked mammal could represent a continuous threat to public health if wildlife trade is not effectively controlled.


Subject(s)
Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL